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The microcanonical partition functiof} , \(E) of a three-dimensional ferromagnetic simple cubic Blume-
Capel model is calculated for several coupling ratioglose to and on the first-order side of the tricritical
point. To this end a single Monte Carlo simulation of a suitably extended partition function for systems of
LXL XL spins withL €{8,10,12,14,1Bwas performed. A finite system analog of the latent heat is introduced
in order to define a tricritical point in finite systems as well. An empirical scaling of its coordinates to the
thermodynamic  limit yields o(=2.84479-0.00030 for the tricritcal coupling ratio, and
kgT(M/J=1.4182+0.0055 for the tricritical transition temperature. The results are compared with values

obtained on fcc lattice§S1063-651X97)04311-0

PACS numbds): 64.60.Kw, 64.60.Cn, 07.05.Tp

INTRODUCTION

The aim of this paper is a determination of the coordinates
of the tricritical point in the plane of coupling ratio and tem-

Classical lattice spin models are among the most popula@erature for a three-dimensional ferromagnetic Blume-Capel
systems of interacting degrees of freedom, since amazingljiodel on a simple cubi¢so lattice. Althougha™ and T®
simple models can account for many characteristic featureare not universal quantitigge., they also depend on details
of phase diagrams occuring in “real” experiments. This pa-Of the lattice topology their knowledge is helpful in the

per deals with what has become known as Bfieme-Capel
model It is defined by the Hamiltonian

H(x):=—32 si(X)s;(x)+ D>, sf(x) (1)
(ihJ) i

=:—J3;(x)+ D3 p(X), 2
which maps a state in a phase spacEy:={—1,0+1}*N
onto its energy. [y being the set of all possible configura-
tions of a lattice consisting ol spins, each of which can
take on the values 1, 0, or+1.) The notationz; ;, implies
summation over all pairs of nearest-neighbor sgths ob-
viously depends on the topology of the latlicand s;(x)
denotes the value of the spin being located at the vertax
the configuratiorx. J and D are coupling constants, whose
ratio «: =D/J controls the thermodynamic behavior of the
system. In this paper only the ca3d >0 is relevant.

One of the most interesting features of the Blume-Cape

model is the occurrence of taicritical point. A qualitative

phase diagram in the plane of coupling ratio and temperatur
is shown in Fig. 1: The spin-ordered phase is separated fror
the disordered phase by a line of phase transitions, whicl

change at the tricritical point from second to first order.

Models of this kind were first introduced in 1966 by
Blume[1] and Capel[2], and since then have been investi-
gated by methods like the mean-field approximafidr4],
series expansiofb], renormalization 6], and Monte Carlo
simulation[7-9], to name but a few. An introduction to tri-
criticality was given in Ref[10].

*Present address: Max-Planck-Institutr fiPolymerforschung,
Ackermannweg 10, 55128 Mainz, Germany.
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process of determining tricritical exponents. A method of
localizing the tricritical point to a fairly high accuracy is
described, which basically relies on conventional Monte
Carlo techniques, and combines the advantages of working
in the microcanonical ensemble, reweighting two-
dimensional histograms and investigating the precursors of a
phase transition in finite systems as a functiorrotLattices

with periodic boundaries andN=L® spins with L
€{8,10,12,14,1Bwere studied.

MICROCANONICAL FORMALISM

The starting point for the microcanonical treatment of fi-
nite systems will be the microcanonical partition function

]

T(t)--

(27

FIG. 1. Schematic phase diagram of the Blume-Capel model in
the plane of coupling ratio and temperature. The solid curve is a
line of second-order, the dashed curve of first-order phase transi-
tions. They separate the spin-ordered from the disordered phase,
and meet at a tricritical poinTP).
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They will be called FS latent heat, FS transition temperature,
/ and FS entropy barrier, respectively, where “FS” stands for
“finite system” and the label d” in Eq. (6) for “discon-
tinuous.” Despite its clumsiness, this choice of names is
used because it alludes to the meaning of the objects, and it
reminds one at the same time that a connection to a possible
phase transition of the infinite system still has to be estab-
lished.

The importance of these definitions relies on the follow-
ing fact: The entropy of an infinite system cannot show par-
tially convex behavior, because the system could increase its
entropy inside the convex range by transferring energy from
one region of the system to another, i.e., spontaneously de-
veloping local inhomogeneities and splitting up into two

€min,N €maz.N pha;e{ll]. This happens without a change in energy, since
€ the (intensive surface energy between these phases vanishes
o S in the thermodynamic limitsuitable short-range interactions

FIG. 2. Qualitative picture of an entropy(e), which differson 5.6 hresupposedThe process continues, until the entropy of

arangeRy from its concave envelopey(e), the latter being justa  the system coincides with its concave envelope, which then

straigt:;h(; line onRy . For clarity, this feature has been vastly exag- qualitatively resemble$_N(e). However, such an entropy,

gerated. with a linear part over a certain energy range, is known to

describe a system with a temperature-driven first-order phase

etransition, and values of latent heat and transition tempera-

ture as given in Eqs(5) and (6) (with R being the linear

rangg. In a finite system such a phase separation cannot

render a partly convex entropy completely concave, because

ONE)= 2 Sen 3y  the surface effects are not negligible. Hence a FS entropy

xel'y barrier Asy exists, which vanishes in the thermodynamic
limit and, according to its origin, it should scale liké¢ /@
Kg (compare Ref[12]).

sn(€): =y INLn(Ne)]. 4 Carrying out this limit does of course not reduce to

merely replacingsy(e) for some arbitrary(perhaps quite

Dependencies on further observabiike, e.g., the magne- Smal) N by its concave envelope, i.esy(e) is evidently
tization) are — at least for the moment — ignored. As usual,Still a function ofN, but the easily measurable FS quantities
small letters represenintensivequantities. Whereas in the (5). (6) and (7) can be investigated as functions Nt In
thermodynamic limitwhich is assumed to exjsthe specific  Particular, if the limits

entropy is a concave function of the energy, this need not be

and its logarithm, the specific entropy as a function of th
specific energy. If we suppress the coupliagn a first step,
these functions are defined as

L . - ) o (lat). _ |; (lat)
the case irfinite systems. First, single-spin excitations may e N“mxeN , 8
be visible insy(e) as rapid(small scal¢ oscillations. How-
ever, conditions for their appearance and typical properties TD:- — lim T(n?) 9)

will not be discussed in this paper. Second, on a large scale
sy(€) can be convex in a certain range of energies, and this

in turn is related to the possibility of phase transitions occurexist, ande(® is larger than zero, then the infinite system

ing in the corresponding infinite system. The following dis- yndergoes a first-order phase transition with latent b
cussion will be restricted to temperature-driven first-ordery; the transition temperatufé®). This can be seen by look-

N—

phase transitions. _ . ing at thecanonicalpartition function
If sy(e) is not a concave function of the specific energy,
then it will differ from its concave envelope \ge) in a - S N
certain rangeRy : = [ €minn ; €maxn] Of €nergies, and without Zn(T): " eeHT i ex k—B[sN(e)—e/T] - (10

loss of generality there shall be only one such rargjge)
is just a straight line ofiky (see Fig. 2 Now one can define For largeN a Laplace evaluation of the sum becomes appro-

three quantities related t8,;: priate. If T is chosen to bé’ff) from Eq. (6), the exponent
sn(€)—e/T has a double-hump structure with two maxima
el : =|Rul: = €maxn— EminN (50  of equal height, and small variations to higher or lower tem-

perature give preference to the maximum at higher or lower

energy. In the thermodynamic limit this results in the char-

acteristic jump ofe(T) at T=T® which is equal in size to

L the latent heae('aV,

Asy:= max[ sy(e)—sy(e)]. (7) One might object that thémicrocanonicgl FS quantities
eeRy defined by Eqgs(5) and (6) correspond to a Laplace evalua-

TW:=[dsy(e)/de] ! forany ee Ry, (6)
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tion of Eqg. (10) for arbitrary N, since they rely on finding be avoided herdlf it comes to that, the Laplace transforma-
the maximum in the exponers}(e) —e/T, and hence esti- tion from Q, \(E) to Z, \(T) can always be done in a sec-
mate corresponding quantities derived from fobanonical  ond step]

partition functionZy(T) rather poorly forsmall N. Of course Taking the logarithm of Eq.14) and multiplying by
that is true. Generally, microcanonical and canonical enkg/N one ends up with the microcanonical specific entropy
semble arenot equivalent with respect to the description of of the Blume-Capel model as a function of specific energy
finite systems. On the other hand, if the microcanonical spefor any desired value of:

cific entropy shows no substantial system size dependencies,

the FS quantities thus defined are excellent approximations

to the respectivénfinite system propertiegl3,14]. s, (€)= Eln[ﬂ W(Ne)T (15)
«, . N a, .

“SKEW SUMMING”

In the last sectiorsy(e) was presented as the quantity TRICRITICALITY
encoding in a convenient way all necessary information . _— .
needed for the study of phase transitions. However, the be- Localizing the tricritical point of (tt?e Blume-Capel model
havior of the Blume-Capel model also depends on the ratign€@ns finding the tricritical rati@™ at which the phase
«:=D/J of the coupling constants in Hamiltonia®). This transition changes between first and second order, and the

can be taken into account by defining the slightly more g(_‘,ngorresponding tricritical transition temperatuf&. In order

eral microcanonical partition function to track d_o_vvn the§e obje(_;ts it is useful_to define two further
FS quantities, which — like the ones introduced before —
are finite-system counterparts of infinite-system properties:
Q. nN(E,Sp):= EF SE.Hx) s, .35 (%) (1) the “FS tricritical ratio” o’ and the “FS tricritical transi-
xel'y

tion temperature”T() . For values ofa larger than the tri-
Hitical ratio «® (and smaller than half the coordination
number of the latticethe Blume-Capel model shows a non-
zero latent heag®. Similary, in thefinite system there is a
FS tricritical ratio above which a FS latent heat exists. This
Hgotivates the following definitions:

which classifies the degree of degeneracy according to t
energyand the valueS; of the second spin surBp in the
Hamiltonian[Egs. (1) and (2)]. The subscripiz should re-
mind one of the coupling ratio, and from now on it will be
added as an index or argument, where it is needed. Note t

connection
alV:=infla:e\®(a)>0}, (16)
Qa,N(E!SD):Qa,N(E) (12)
SpeXp(l'y)
TV:= lim T (a). 17)
between the partition functions defined in E¢®. and (11). alal)
Given a different Hamiltonian
H:=-J3;+D'Sp=:H+D3p, (13)  The construction of the latter indirectly via the limit| aﬂ)

is necessary, since the FS transition temperature fronetqg.
with H being defined in Egs(1l) and (2) and D:=D'—D is not defined forr= o)) . The tricritical point of the Blume-
denoting the shift in the second coupling constant, it is posCapel model may now be obtained bgaling the FS quan-
sible to calculate its microcanonical partition function as atities (16) and (17) to the infinite system
function of energy by a transformation &, \(E,Sp): At this point a word of caution seems appropriate. It is not
' too difficult to construct entropies, \(e) such thataf\}) isa
well-defined quantity and lig....a{l'=:a® exists,although

Qo n(E):= Eeg(:rm Se+psy £ {laN(E,Sp). (14) the corresponding system domst show a tricritical point.
Spe3p(Ty) [One might think of entropies, which yield a FS latent heat

elP(a)=(a—aW)/N for a>a ande{(*(a)=0 other-

By a suitable choice oD, which depends omy, every  wise] The method just presented, which in the end just uses
new coupling ratioa’ can be reached. The Kroneck&iin aﬁ), only works the other way around: If one knows — for
Eqg. (14) defines a set of straight lines in th&,Sy) plane  whatever reason — that a tricritical point occurs, it can be
with a constantnew energyE’. For D#0 these summing localized (apart from possible difficulties which the scaling
lines are tilted against the ones fér=0, the latter case N-—o can imposg In other words, questions concerning the
corresponding to Eq(12). This suggests the nameskew existenceof such a point have to be treated differently. One
summing for the procedure. could for instance show that in the thermodynamic limit the

Transformations of this kind found widespread applica-FS latent heat indeed remains finite on the presumed first-
tions soon after the work of Ferrenberg and Swendserder side or investigate scaling properties of the FS entropy
[15,16, but have ever since usually been combined with abarrier[12,17]. However, in consideration of today’s knowl-
change to the canonical ensemiféssentially by using the edge of the Blume-Capel model, this paper will not dwell
exponential function instead of the Kroneck®r, which will upon this point.
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MONTE CARLO SIMULATION wise two-dimensional stationary distributionv(E,Sp)

The remaining problem is the determination of the parti-*1/Qan(E,Sp). This would make sure that a predeter-
tion function (11). From the numerous methods devised forMinable range[ Enmin; Emaxl X[ Sp,min: Sp,max is surveyed
dealing with this perpetual task of statistical physics, this¥ith @ constant statistical quality. However, —since
paper chooses the Monte CatMC) way. Generally, itvis ~ (an(E,Sp) varies over many orders of magnitude, there

a probability distribution and a function on a phase space Would be a large number of terms in EG4), which were
I'y, one often wants to know the expectation valyecalculated most accurately but are completely insignificant

(f)w:= Trp (wf) of the observabld in the statew. With for the value of the sum. Since only the close neighborhood
W N of the FS tricritical point is of actual interest, one can restrict

oneself to small shift parametef® when doing the skew
summing, if the simulation is performed closed{}’ . Then

{x}m.w being a collection ofM elements drawn fronl"y
according to the distribution wone can define

1 the contributing terms in Eq14) are almost the same as in
EFAXmw)i= i Z f(x). (18 the caseD=0. Hence it suffices to concentrate the sampling
xe{X}m w on a small range around the maxima @f, y(E,Sp) as a

function of Sp for every value ofE. This is exactly what

Since this has expectation valgé),, [with respect to all happens if the conventional one-dimensional stationary dis-

possible {x}\ ., samples and probability P({X}y w) tribution is applied.

:HXG{x}M,WW(X?] and variance <(f2>W_<f>5v)/M’ It can The confinement to a small region in the phase diagram

serve as arestimatefor (f),,, because théxjy,, sample  ang the need for a sound prior knowledgead should not

entering on the right-hand side (8) can be simulated on a e regarded as a drawback, since the method is designed

computer by means of an ergodic Markov process with yactly for the purpose of enhancing ones knowledge of this

stationary distributiorw. . small region. In addition it is in accord with the idea of
Many different Monte Carlo methods can be classifiedimportance samplingfor the statistical quality of the histo-

according to the choice ofv and f. Taking, e.g.,w grams is large where it is actually needed.

cexp(—BH) and f=H" (neN), one “simulates” thenth

moment of the energy in the canonical ensemble. With the

introduction of observables likég ) the door to histogram ESTIMATION OF ERRORS

techniques was opendd5,1§. If, additionally, w satisfies In order to obtain quantities like the latent hd&j, the

w(x)=w[H(x)], the microcanonical partition functiof8)  entropy derived from the MC estima21) and Eqs(14) and
can be written as (15) first has to be smoothed, which was done by fitting a
polynomial of sufficiently high degreéypically 20—40Q to
the scattered data. Thereafter the necessary double tangent
(Cenpopw™™t 1 construction is a simple numerical business.
Qon(EB)= W(E) = M\TV(E)m% O Hx) - The attachment of error bars to the valuesefft’, e.g.,
M (199 Wwas done by a procedure described in R&fl]: Since the
data points scatter around the “true” entropy in a known
The special choice way, which in this case is approximately Gaussian, it is easy
to generate a large number of fictitious entropiies., ones
that were not the result of the MC simulation lmatuld have
W(E)x1/Q, n(E)=exp{—Ns, n(E/N)/kg}  (20)  been from the actual entropy by adding a Gaussian noise
with proper variance. The fictitious values of, seﬂ?‘) de-
obviously leads to equipartition in the sampled histogranyived from this set of entropies can now be used to determine
[18,19. (Note also the early work of Torrie and ValleB20]  the deviations.
on non-Boltzmann sampling distributiopn3he paradox situ-
ation that thefinal resultof the simulation — the microca-
nonical partition function — is needed in the implemented SIMULATION, SCALING, AND RESULTS
algqrithm from theyery begiqningis surmounted py an it- The Blume-Capel model was simulated on three-
eration procedure in the starting pha_se and constitutes no re@mensional simple cubic lattices with periodic boundary
proble.m. The complete method might be calledtropic  ~,ngitions andL {8,10,12,14,18 Some preliminary MC
sampling with respect to the energy _ runs showed that the coupling ratio=2.85 lies sufficiently
The two-dlmensmnabartltlonl function(11) is related to . ose to the expected FS tricritical points, 8620 and
the observablee 1 ds, 3,00+ 1-€- D =57 were selected for the Hamiltonian during the simula-
tion. The chosen range of the energy and the number of
M>1 1 lattice sweeps is shown in Table I.
Qo n(ESp) = MW(E) XE% O H(X) Oy, 3p(x) Both the FS latent hea{(®"(a) and the FS entropy bar-
M (22) rier Asy(a) become smaller when approaching the FS tri-
critical point from above. Since a clear identification of the
Concerning the appropriate state, one might have the idea gonvex part ins, y(€) is impossible, ifAsy(a) gets consid-
extend Eq(20) by performing something like entropic sam- erably smaller than the unavoidable scatter of the measured
pling with respect toE and S, by introducing a like- entropy, the functiong{®(a) and T{’(a) are not known
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TABLE |I. Chosen energy range and MC steps per spin for the TABLE Il. Measured values of the FS tricritical transition tem-
five simulated Blume-Capel modeléNote that the implemented perature and the FS tricritical coupling ratio, as well as their ex-
coupling constants weré=20 andD =57 trapolations to the infinite system. The numbers in brackets give the
error in the last digits.

L Emin E max Lattice sweeps " "
t t
8 4846 6016 1.4% 10 - ke T/ N
10 10 000 12 200 4.5110° 8 1.342236) 2.849313)
12 17712 21384 3.8410° 10 1.362 931) 2.848 67493
14 28 812 34 300 1.0810° 12 1.375 935) 2.847 97095)
18 62 700 73700 5.35107 14 1.384 0269) 2.847 6217)
18 1.394 0758 2.846 9414)
% 1.418255) 2.844 7930)

down to the FS tricritical point. Hence one needs extrapola
tions before Eqs(16) and (17) can be used.

It was found that near the FS triCI’itical pOint the behaViorestabnshed scaling theory th|s was done empirica”y_ The
Of the FS |atent heat iS exce”ently described by a pOWer IaWassumed functiona' forms were
so that the following functional form was assumed:

e'(\llat)(a)oc(a_ a({\}))l/oN, a>a('\})_ (22) (Lt>: 4 e (23

Figure 3 demonstrates this for the system with 10. Since

Landau theory also predicts a power law for the latent heat

close to the tricritical point, Eq(22) is expected to be of c

general validity for tricritical behavior and not a specialty of TH=TO+ T2 (24

the Blume-Capel model, although further studies on different L

models are certainly needed to confirm this. In any case, the

fact that a nonanalytic function can be successfully fitted to ) . .

finite systendata is a typical feature of the microcanonical Table Il summarizes the coordinates found for (R&) tri-

approach22]. _cr|_t|c_al point in finite systems and f[he scaled values for the
The investigated values af were betweeniii~2.847g infinite system. Thus the best estimates for the thermody-

(only for L=18) and2~2.8571. Over this small interval namic  limit —are (V=2.84479-0.00030 and

the FS transition temperature appears almost as a straigkeT("/J=1.4182£0.0055.(The deviations were calculated

line, but a functional formT@(a)=(a(®— a)¥*N was as- Vid standard error propagation in the lineay fithe results as

sumed in order to allow for a small curvature. which in- Well as the assumed scaling functions are also plotted in

creases with increasing, cf. Fig. 1. Figs. 4 and 5.
The final task is the scaling of the FS quantitié) and
T® to the thermodynamic limit. For lack of a well- 2.851 . . . . . .
2.85 |-
5
' ' ' ' 2.819 [
af . 2848} .
RN
3
2.847 |- 4
3 - -
2.846

F'S second order 7]

2.845 I

(e e/ 7) 108

s i 9844 ] 1 1 ] ] 1
0 002 004 006 008 0.1 012 0.14

1/L

o L | L ] L
2.848 2.85 2.852 2.854 2.856 2.858
o

FIG. 4. Extrapolation of the FS tricritical coupling ratitfg) to
the infinite system via E¢(23). The error ina® is indicated as a

FIG. 3. Plot of the FS latent heaiﬂat) raised to a power vertical bar on the ordinate. The comparatively large error for the
0y=1.982 as a function of the coupling ratie for the Blume-  system withL =8 has its origin in single-spin excitations, which are
Capel system wittN=10° spins. With this value of the mea- more pronounced in smaller systems and reduce the accuracy with
sured values o0&{®(«) collapse nicely onto a straight line, con- which a double-hump structure in the entropy can be detected. Note
firming the functional form proposed in E€R2). The intersection that the functiom{‘% can also be seen as a borderline between finite
of this line with the abscissa gives the FS tricritical pa‘nﬁ‘f .The  systems which show FS first-order transitigabove and systems
error in the latter is indicated as a horizontal bar. which do not(below).
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TABLE Ill. FS entropy barrierAsy(a)/kgX 10* for three cou-

1.43

142 ' ' ' ' ' ' pling ratios near the tricritical point. Note thatsy increaseswith
’ increasing system size, although in the lilNit-oo it must become
141 ] zero forall values ofa.

1.4 e

3 139 . L a=3 a=1 a=3

TR 1.38 -

237 4 8 0.010062) 0.046@67) 0.075476)
1.36 4 10 0.008819) 0.047917) 0.090@24)
135 i 12 0.019914) 0.075712) 0.128 3811)
134 ] 14 0.025813) 0.091715) 0.149G18)
1.33 1 I ] 1 1 1 18 0.043212) 0.122811) 0.190514)

0 002 004 0.06 008 01 012 014
1/L

cannot find a precursor If is too small. Such a behavior is
not obvious in the first place. Indeed, a simulation of the
two-dimensionaBlume-Capel model indicates that the slope
of af‘; plotted against 1/ is negative i.e., sufficiently small
systems show signs of a first-order transition, which do not
survive in the thermodynamic limf24].
DISCUSSION A final remark concerns the scgling pf the FS entropy
barrier (7). Kosterlitz and Leg[12] investigated the two-
To the author’s knowledge no prior studies with the aimdimensional Potts model withe{8,10, and found that it
of precisely localizing the tricritical point of the Blume- takes larger systems to see the expected behawige: 1/L
Capel model on simple cubiclattice exist, so the results for q=8 than forq=10. They conjectured that small sys-
will be compared with those obtained on fcc lattices. Saultems obey this scaling relation only, if the transition is
Wortis, and Stauffer{5] investigated the fcc system by stronglyfirst order. Since the phase transitions investigated
means of high- as well as low-temperature series expansiong this paper are only just located on the first-order side of
and foundkgT(/J=3.138(84) for the tricritical transition the tricritical point, any feature of a discontinuous transition
temperature ana(=5.659(12) for the tricritical coupling can be regarded as being very weakly developed. Conse-
ratio. Later Jain and LanddT] found kg T"/J=3.072(24)  quently, the proper scaling afsy(«) is not only violated
and «(V=5.652(48) within a MC study. quantitatively but alsqualitatively From Table 1ll it can be
In a fcc lattice each spin has twice as many nearest neigtseen that — at least for the presented valued of the
bors as in a sc lattice, and mean-field theory predicts a triviadpecific entropy barrieincreaseswith increasing system
scaling of T® and o with the coordination number. How- size, if « is chosen closely ta(®. Hence, to judge the order
ever, both quantities are not univergahlike critical expo-  of the phase transition from theealingof Asy(«), and thus
nentg, and the tricritical transition temperature of the fcc localize the tricritical point, is clearly inferior to the possi-
lattice — reduced by a factdr— is still 11%[5] or 8%[7] bility of observing the “meta order parameter” FS latent
higherthan its value obtained in this work with sc topology. heat as a function of.
This can be made plausible by considering thatfor the
system with larger coordination number mean-field theory CONCLUSION
might be regarded as a better approximation, @ndit al- ) ) ) . ) »
ways overestimates the transition temperature. Note that for Given the two-dimensional microcanonical partition func-

the three-dimensional Ising model the value T8f scaled 1N {an(E,Sp) of the Blume-Capel model, its microca-
with the coordination number is about 9% larger in the fccnonical entropy as a function of energy can be calculated for

case compared with the sc orisee, e.g., Ref23]). arbitrary values of the coupling rati®. By defining quanti-
Since mean-field theory underestimates the tricritical couties likeef® or «(), which are finite-system counterparts of

pling ratio (for coordination number 6,a§\}|)F=4In(2) infinite-system properties, it is possible to pinpoint the coor-

~2.7726; see, e.g., Re2]), one could expect the properly dinates of the tricritical point Y, T®) in the thermody-

scaled fcc values forr to be smaller than the sc results "a@mic limit. ,
obtained in this paper. This is easily seen to be the case, byt 't Might be regarded as a drawback that the extrapolation

the difference is surprisingly small, and, in order to deter-N—  is doneempirically. .l\_levertheless the author considers
mine it more precisely, a reduction of the fcc error bars isthe Presented FS quantities to be excellent probes for the
needed. investigation of infinite-system thermodynamic behavior
There is another point to be learned from the scaling ofi-€- ]??E"Y mealsurab:]e an(tj c_Iets_;u)mA ddeepbi[ unde:zta;)nd- .
the FS tricritical ratio. The functiom(Ltg(llL) separates the Ing of their scaling characteristics undoubtly wou €o

finite systems, which show a FS latent heat, from thos«great practical importance.
which do not(the latter lying under the curve, see Fig. 4
Since this function has positiveslope, there exist systems
(e.g.,a=2.847) which show a first-order phase transition in  The author would like to thank Alfred Hier and Michael
the thermodynamic limit, but even a microcanonical analysiPromberger for many stimulating discussions.

FIG. 5. Extrapolation of the FS tricritical transition temperature
T{ to the infinite system via Eq24). The error inT® is indicated
as a vertical bar on the ordinate.
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