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Tricriticality and the Blume-Capel model: A Monte Carlo study
within the microcanonical ensemble

Markus Deserno*

Institut für Theoretische Physik I, Universita¨t Erlangen-Nu¨rnberg, Staudtstraße 7 B3, 91058 Erlangen, Germany
~Received 27 May 1997!

The microcanonical partition functionVa,N(E) of a three-dimensional ferromagnetic simple cubic Blume-
Capel model is calculated for several coupling ratiosa close to and on the first-order side of the tricritical
point. To this end a single Monte Carlo simulation of a suitably extended partition function for systems of
L3L3L spins withLP$8,10,12,14,18% was performed. A finite system analog of the latent heat is introduced
in order to define a tricritical point in finite systems as well. An empirical scaling of its coordinates to the
thermodynamic limit yields a (t)52.844 7960.000 30 for the tricritical coupling ratio, and
kBT(t)/J51.418260.0055 for the tricritical transition temperature. The results are compared with values
obtained on fcc lattices.@S1063-651X~97!04311-0#

PACS number~s!: 64.60.Kw, 64.60.Cn, 07.05.Tp
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INTRODUCTION

Classical lattice spin models are among the most pop
systems of interacting degrees of freedom, since amazi
simple models can account for many characteristic featu
of phase diagrams occuring in ‘‘real’’ experiments. This p
per deals with what has become known as theBlume-Capel
model. It is defined by the Hamiltonian

H~x!:52J(
^ i , j &

si~x!sj~x!1D(
i

si
2~x! ~1!

5:2JSJ~x!1DSD~x!, ~2!

which maps a statex in a phase spaceGN :5$21,0,11%3N

onto its energy. (GN being the set of all possible configura
tions of a lattice consisting ofN spins, each of which can
take on the values21, 0, or11.! The notation(^ i , j & implies
summation over all pairs of nearest-neighbor spins~this ob-
viously depends on the topology of the lattice!, and si(x)
denotes the value of the spin being located at the vertexi in
the configurationx. J andD are coupling constants, whos
ratio a:5D/J controls the thermodynamic behavior of th
system. In this paper only the caseJ,D.0 is relevant.

One of the most interesting features of the Blume-Ca
model is the occurrence of atricritical point. A qualitative
phase diagram in the plane of coupling ratio and tempera
is shown in Fig. 1: The spin-ordered phase is separated f
the disordered phase by a line of phase transitions, wh
change at the tricritical point from second to first order.

Models of this kind were first introduced in 1966 b
Blume @1# and Capel@2#, and since then have been inves
gated by methods like the mean-field approximation@1–4#,
series expansion@5#, renormalization@6#, and Monte Carlo
simulation@7–9#, to name but a few. An introduction to tri
criticality was given in Ref.@10#.

*Present address: Max-Planck-Institut fu¨r Polymerforschung,
Ackermannweg 10, 55128 Mainz, Germany.
561063-651X/97/56~5!/5204~7!/$10.00
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The aim of this paper is a determination of the coordina
of the tricritical point in the plane of coupling ratio and tem
perature for a three-dimensional ferromagnetic Blume-Ca
model on a simple cubic~sc! lattice. Althougha (t) andT(t)

are not universal quantities~i.e., they also depend on detai
of the lattice topology!, their knowledge is helpful in the
process of determining tricritical exponents. A method
localizing the tricritical point to a fairly high accuracy i
described, which basically relies on conventional Mon
Carlo techniques, and combines the advantages of wor
in the microcanonical ensemble, reweighting tw
dimensional histograms and investigating the precursors
phase transition in finite systems as a function ofa. Lattices
with periodic boundaries andN5L3 spins with L
P$8,10,12,14,18% were studied.

MICROCANONICAL FORMALISM

The starting point for the microcanonical treatment of
nite systems will be the microcanonical partition functio

FIG. 1. Schematic phase diagram of the Blume-Capel mode
the plane of coupling ratio and temperature. The solid curve
line of second-order, the dashed curve of first-order phase tra
tions. They separate the spin-ordered from the disordered ph
and meet at a tricritical point~TP!.
5204 © 1997 The American Physical Society
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56 5205TRICRITICALITY AND THE BLUME-CAPEL MODEL: . . .
and its logarithm, the specific entropy as a function of t
specific energy. If we suppress the couplinga in a first step,
these functions are defined as

VN~E!:5 (
xPGN

dE,H~x! , ~3!

sN~e!:5
kB

N
ln@VN~Ne!#. ~4!

Dependencies on further observables~like, e.g., the magne-
tization! are — at least for the moment — ignored. As usu
small letters representintensivequantities. Whereas in the
thermodynamic limit~which is assumed to exist! the specific
entropy is a concave function of the energy, this need no
the case infinite systems. First, single-spin excitations ma
be visible insN(e) as rapid~small scale! oscillations. How-
ever, conditions for their appearance and typical proper
will not be discussed in this paper. Second, on a large s
sN(e) can be convex in a certain range of energies, and
in turn is related to the possibility of phase transitions occ
ing in the corresponding infinite system. The following di
cussion will be restricted to temperature-driven first-ord
phase transitions.

If sN(e) is not a concave function of the specific energ
then it will differ from its concave envelope sN̄(e) in a
certain rangeRN :5@emin,N ;emax,N# of energies, and without
loss of generality there shall be only one such range.s̄N(e)
is just a straight line onRN ~see Fig. 2!. Now one can define
three quantities related toRN :

eN
~ lat! :5uRNu:5emax,N2emin,N , ~5!

TN
~d! :5@d s̄N~e!/de#21 for any ePRN , ~6!

DsN :5 max
ePRN

@ s̄N~e!2sN~e!#. ~7!

FIG. 2. Qualitative picture of an entropysN(e), which differs on

a rangeRN from its concave envelopes̄N(e), the latter being just a
straight line onRN . For clarity, this feature has been vastly exa
gerated.
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They will be called FS latent heat, FS transition temperatu
and FS entropy barrier, respectively, where ‘‘FS’’ stands
‘‘finite system’’ and the label ‘‘d’’ in Eq. ~6! for ‘‘discon-
tinuous.’’ Despite its clumsiness, this choice of names
used because it alludes to the meaning of the objects, a
reminds one at the same time that a connection to a pos
phase transition of the infinite system still has to be est
lished.

The importance of these definitions relies on the follo
ing fact: The entropy of an infinite system cannot show p
tially convex behavior, because the system could increas
entropy inside the convex range by transferring energy fr
one region of the system to another, i.e., spontaneously
veloping local inhomogeneities and splitting up into tw
phases@11#. This happens without a change in energy, sin
the ~intensive! surface energy between these phases vanis
in the thermodynamic limit~suitable short-range interaction
are presupposed!. The process continues, until the entropy
the system coincides with its concave envelope, which t
qualitatively resembless̄N(e). However, such an entropy
with a linear part over a certain energy range, is known
describe a system with a temperature-driven first-order ph
transition, and values of latent heat and transition tempe
ture as given in Eqs.~5! and ~6! ~with R being the linear
range!. In a finite system such a phase separation can
render a partly convex entropy completely concave, beca
the surface effects are not negligible. Hence a FS entr
barrier DsN exists, which vanishes in the thermodynam
limit and, according to its origin, it should scale likeN21/d

~compare Ref.@12#!.
Carrying out this limit does of course not reduce

merely replacingsN(e) for some arbitrary~perhaps quite
small! N by its concave envelope, i.e.,s̄N(e) is evidently
still a function ofN, but the easily measurable FS quantiti
~5!, ~6! and ~7! can be investigated as functions ofN. In
particular, if the limits

e~ lat!:5 lim
N→`

eN
~ lat! , ~8!

T~d!:5 lim
N→`

TN
~d! ~9!

exist, ande(lat) is larger than zero, then the infinite syste
undergoes a first-order phase transition with latent heate(lat)

at the transition temperatureT(d). This can be seen by look
ing at thecanonicalpartition function

ZN~T!:5 (
ePH~GN!/N

expH N

kB
@sN~e!2e/T#J . ~10!

For largeN a Laplace evaluation of the sum becomes app
priate. If T is chosen to beTN

(d) from Eq. ~6!, the exponent
sN(e)2e/T has a double-hump structure with two maxim
of equal height, and small variations to higher or lower te
perature give preference to the maximum at higher or low
energy. In the thermodynamic limit this results in the ch
acteristic jump ofe(T) at T5T(d) which is equal in size to
the latent heate(lat).

One might object that the~microcanonical! FS quantities
defined by Eqs.~5! and ~6! correspond to a Laplace evalua
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5206 56MARKUS DESERNO
tion of Eq. ~10! for arbitrary N, since they rely on finding
the maximum in the exponentsN(e)2e/T, and hence esti-
mate corresponding quantities derived from the~canonical!
partition functionZN(T) rather poorly forsmall N. Of course
that is true. Generally, microcanonical and canonical
semble arenot equivalent with respect to the description
finite systems. On the other hand, if the microcanonical s
cific entropy shows no substantial system size dependen
the FS quantities thus defined are excellent approximat
to the respectiveinfinite system properties@13,14#.

‘‘SKEW SUMMING’’

In the last sectionsN(e) was presented as the quanti
encoding in a convenient way all necessary informat
needed for the study of phase transitions. However, the
havior of the Blume-Capel model also depends on the r
a:5D/J of the coupling constants in Hamiltonian~1!. This
can be taken into account by defining the slightly more g
eral microcanonical partition function

Va,N~E,SD!:5 (
xPGN

dE,H~x!dSD ,SD~x!, ~11!

which classifies the degree of degeneracy according to
energyand the valueSD of the second spin sumSD in the
Hamiltonian @Eqs. ~1! and ~2!#. The subscripta should re-
mind one of the coupling ratio, and from now on it will b
added as an index or argument, where it is needed. Note
connection

(
SDPSD~GN!

Va,N~E,SD!5Va,N~E! ~12!

between the partition functions defined in Eqs.~3! and ~11!.
Given a different Hamiltonian

H8:52JSJ1D8SD5:H1DSD , ~13!

with H being defined in Eqs.~1! and ~2! andD:5D82D
denoting the shift in the second coupling constant, it is p
sible to calculate its microcanonical partition function as
function of energy by a transformation ofVa,N(E,SD):

Va8,N~E8!:5 (
EPH~GN!

SDPSD~GN!

dE1DSD ,E8Va,N~E,SD!. ~14!

By a suitable choice ofD, which depends ona, every
new coupling ratioa8 can be reached. The Kroneckerd in
Eq. ~14! defines a set of straight lines in the (E,SD) plane
with a constantnew energyE8. For DÞ0 these summing
lines are tilted against the ones forD50, the latter case
corresponding to Eq.~12!. This suggests the name ‘‘skew
summing’’ for the procedure.

Transformations of this kind found widespread applic
tions soon after the work of Ferrenberg and Swend
@15,16#, but have ever since usually been combined with
change to the canonical ensemble~essentially by using the
exponential function instead of the Kroneckerd), which will
-
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be avoided here.@If it comes to that, the Laplace transforma
tion from Va,N(E) to Za,N(T) can always be done in a sec
ond step.#

Taking the logarithm of Eq.~14! and multiplying by
kB /N one ends up with the microcanonical specific entro
of the Blume-Capel model as a function of specific ene
for any desired value ofa:

sa,N~e!:5
kB

N
ln@Va,N~Ne!#. ~15!

TRICRITICALITY

Localizing the tricritical point of the Blume-Capel mode
means finding the tricritical ratioa (t) at which the phase
transition changes between first and second order, and
corresponding tricritical transition temperatureT(t). In order
to track down these objects it is useful to define two furth
FS quantities, which — like the ones introduced before
are finite-system counterparts of infinite-system propert
the ‘‘FS tricritical ratio’’ aN

(t) and the ‘‘FS tricritical transi-
tion temperature’’TN

(t) . For values ofa larger than the tri-
critical ratio a (t) ~and smaller than half the coordinatio
number of the lattice! the Blume-Capel model shows a no
zero latent heate(lat). Similary, in thefinite system there is a
FS tricritical ratio above which a FS latent heat exists. T
motivates the following definitions:

aN
~ t ! :5 inf$a:eN

~ lat!~a!.0%, ~16!

TN
~ t ! :5 lim

a↓aN
~ t !

TN
~d!~a!. ~17!

The construction of the latter indirectly via the limita↓aN
(t)

is necessary, since the FS transition temperature from Eq~6!
is not defined fora<aN

(t) . The tricritical point of the Blume-
Capel model may now be obtained byscaling the FS quan-
tities ~16! and ~17! to the infinite system.

At this point a word of caution seems appropriate. It is n
too difficult to construct entropiessa,N(e) such thataN

(t) is a
well-defined quantity and limN→`aN

(t)5:a (t) exists,although
the corresponding system doesnot show a tricritical point.
@One might think of entropies, which yield a FS latent he
eN

(lat)(a)5(a2a (t))/N for a.a (t) and eN
(lat)(a)50 other-

wise.# The method just presented, which in the end just u
aN

(t) , only works the other way around: If one knows — fo
whatever reason — that a tricritical point occurs, it can
localized~apart from possible difficulties which the scalin
N→` can impose!. In other words, questions concerning th
existenceof such a point have to be treated differently. O
could for instance show that in the thermodynamic limit t
FS latent heat indeed remains finite on the presumed fi
order side or investigate scaling properties of the FS entr
barrier@12,17#. However, in consideration of today’s know
edge of the Blume-Capel model, this paper will not dw
upon this point.
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56 5207TRICRITICALITY AND THE BLUME-CAPEL MODEL: . . .
MONTE CARLO SIMULATION

The remaining problem is the determination of the pa
tion function ~11!. From the numerous methods devised
dealing with this perpetual task of statistical physics, t
paper chooses the Monte Carlo~MC! way. Generally, ifw is
a probability distribution andf a function on a phase spac
GN , one often wants to know the expectation val
^ f &w :5 TrGN

(w f) of the observablef in the statew. With

$x%M ,w being a collection ofM elements drawn fromGN
according to the distribution w, one can define

E~ f ,$x%M ,w!:5
1

M (
xP$x%M ,w

f ~x!. ~18!

Since this has expectation value^ f &w @with respect to all
possible $x%M ,w samples and probability P($x%M ,w)
5)xP$x%M ,w

w(x)# and variance (̂f 2&w2^ f &w
2 )/M , it can

serve as anestimatefor ^ f &w , because the$x%M ,w sample
entering on the right-hand side of~18! can be simulated on a
computer by means of an ergodic Markov process wit
stationary distributionw.

Many different Monte Carlo methods can be classifi
according to the choice ofw and f . Taking, e.g., w
}exp(2bH) and f 5Hn (nPN), one ‘‘simulates’’ thenth
moment of the energy in the canonical ensemble. With
introduction of observables likedE,H(x) the door to histogram
techniques was opened@15,16#. If, additionally, w satisfies
w(x)5w̃@H(x)#, the microcanonical partition function~3!
can be written as

Va,N~E!5
^dE,H~x!&w

w̃~E!
.

M@1 1

Mw̃~E!
(

xP$x%M ,w

dE,H~x! .

~19!

The special choice

w̃~E!}1/Va,N~E!5exp$2Nsa,N~E/N!/kB% ~20!

obviously leads to equipartition in the sampled histogr
@18,19#. ~Note also the early work of Torrie and Valleau@20#
on non-Boltzmann sampling distributions.! The paradox situ-
ation that thefinal result of the simulation — the microca
nonical partition function — is needed in the implement
algorithm from thevery beginningis surmounted by an it-
eration procedure in the starting phase and constitutes no
problem. The complete method might be calledentropic
sampling with respect to the energy.

The two-dimensionalpartition function~11! is related to
the observabledE,H(x)dSD ,SD(x) , i.e.,

Va,N~E,SD! .
M@1 1

Mw̃~E!
(

xP$x%M ,w

dE,H~x!dSD ,SD~x! .

~21!

Concerning the appropriate state, one might have the ide
extend Eq.~20! by performing something like entropic sam
pling with respect toE and SD by introducing a like-
-
r
s

a

e

eal

to

wise two-dimensional stationary distributionw̃(E,SD)
}1/Va,N(E,SD). This would make sure that a predete
minable range@Emin ;Emax#3@SD,min ;SD,max# is surveyed
with a constant statistical quality. However, sin
Va,N(E,SD) varies over many orders of magnitude, the
would be a large number of terms in Eq.~14!, which were
calculated most accurately but are completely insignific
for the value of the sum. Since only the close neighborho
of the FS tricritical point is of actual interest, one can restr
oneself to small shift parametersD when doing the skew
summing, if the simulation is performed close toaN

(t) . Then
the contributing terms in Eq.~14! are almost the same as i
the caseD50. Hence it suffices to concentrate the sampli
on a small range around the maxima ofVa,N(E,SD) as a
function of SD for every value ofE. This is exactly what
happens if the conventional one-dimensional stationary
tribution is applied.

The confinement to a small region in the phase diagr
and the need for a sound prior knowledge ofaN

(t) should not
be regarded as a drawback, since the method is desig
exactly for the purpose of enhancing ones knowledge of
small region. In addition it is in accord with the idea o
importance sampling, for the statistical quality of the histo
grams is large where it is actually needed.

ESTIMATION OF ERRORS

In order to obtain quantities like the latent heat~5!, the
entropy derived from the MC estimate~21! and Eqs.~14! and
~15! first has to be smoothed, which was done by fitting
polynomial of sufficiently high degree~typically 20–40! to
the scattered data. Thereafter the necessary double tan
construction is a simple numerical business.

The attachment of error bars to the values ofeN
(lat), e.g.,

was done by a procedure described in Ref.@21#: Since the
data points scatter around the ‘‘true’’ entropy in a know
way, which in this case is approximately Gaussian, it is e
to generate a large number of fictitious entropies~i.e., ones
that were not the result of the MC simulation butcould have
been! from the actual entropy by adding a Gaussian no
with proper variance. The fictitious values of, say,eN

(lat) de-
rived from this set of entropies can now be used to determ
the deviations.

SIMULATION, SCALING, AND RESULTS

The Blume-Capel model was simulated on thre
dimensional simple cubic lattices with periodic bounda
conditions andLP$8,10,12,14,18%. Some preliminary MC
runs showed that the coupling ratioa52.85 lies sufficiently
close to the expected FS tricritical points, soJ520 and
D557 were selected for the Hamiltonian during the simu
tion. The chosen range of the energy and the numbe
lattice sweeps is shown in Table I.

Both the FS latent heateN
(lat)(a) and the FS entropy bar

rier DsN(a) become smaller when approaching the FS
critical point from above. Since a clear identification of th
convex part insa,N(e) is impossible, ifDsN(a) gets consid-
erably smaller than the unavoidable scatter of the meas
entropy, the functionseN

(lat)(a) and TN
(d)(a) are not known
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5208 56MARKUS DESERNO
down to the FS tricritical point. Hence one needs extrapo
tions before Eqs.~16! and ~17! can be used.

It was found that near the FS tricritical point the behav
of the FS latent heat is excellently described by a power l
so that the following functional form was assumed:

eN
~ lat!~a!}~a2aN

~ t !!1/uN, a.aN
~ t !. ~22!

Figure 3 demonstrates this for the system withL510. Since
Landau theory also predicts a power law for the latent h
close to the tricritical point, Eq.~22! is expected to be o
general validity for tricritical behavior and not a specialty
the Blume-Capel model, although further studies on differ
models are certainly needed to confirm this. In any case,
fact that a nonanalytic function can be successfully fitted
finite systemdata is a typical feature of the microcanonic
approach@22#.

The investigated values ofa were between131
46 '2.8478

~only for L518) and 20
7 '2.8571. Over this small interva

the FS transition temperature appears almost as a str
line, but a functional formTN

(d)(a)}(aN
(0)2a)1/kN was as-

sumed in order to allow for a small curvature, which i
creases with increasinga, cf. Fig. 1.

The final task is the scaling of the FS quantitiesaN
(t) and

TN
(t) to the thermodynamic limit. For lack of a well

TABLE I. Chosen energy range and MC steps per spin for
five simulated Blume-Capel models.~Note that the implemented
coupling constants wereJ520 andD557.!

L Emin Emax Lattice sweeps

8 4846 6016 1.473108

10 10 000 12 200 4.513108

12 17 712 21 384 3.843108

14 28 812 34 300 1.083108

18 62 700 73 700 5.353107

FIG. 3. Plot of the FS latent heateN
(lat) raised to a power

uN51.982 as a function of the coupling ratioa for the Blume-
Capel system withN5103 spins. With this value ofuN the mea-
sured values ofeN

(lat)(a) collapse nicely onto a straight line, con
firming the functional form proposed in Eq.~22!. The intersection
of this line with the abscissa gives the FS tricritical pointaN

(t) . The
error in the latter is indicated as a horizontal bar.
-

r
,

at

t
e

o
l

ht

established scaling theory this was done empirically. T
assumed functional forms were

aL3
~ t !

5a~ t !1
c1

L
, ~23!

TL3
~ t !

5T~ t !1
c2

L
1

c3

L2
. ~24!

Table II summarizes the coordinates found for the~FS! tri-
critical point in finite systems and the scaled values for
infinite system. Thus the best estimates for the thermo
namic limit are a (t)52.844 7960.000 30 and
kBT(t)/J51.418260.0055.~The deviations were calculate
via standard error propagation in the linear fit.! The results as
well as the assumed scaling functions are also plotted
Figs. 4 and 5.

e TABLE II. Measured values of the FS tricritical transition tem
perature and the FS tricritical coupling ratio, as well as their
trapolations to the infinite system. The numbers in brackets give
error in the last digits.

L kBTN
(t)/J aN

(t)

8 1.3422~36! 2.8493~13!

10 1.362 99~31! 2.848 674~93!

12 1.375 97~35! 2.847 970~95!

14 1.384 02~69! 2.847 62~17!

18 1.394 07~58! 2.846 94~14!

` 1.4182~55! 2.844 79~30!

FIG. 4. Extrapolation of the FS tricritical coupling ratioaL3
(t) to

the infinite system via Eq.~23!. The error ina (t) is indicated as a
vertical bar on the ordinate. The comparatively large error for
system withL58 has its origin in single-spin excitations, which a
more pronounced in smaller systems and reduce the accuracy
which a double-hump structure in the entropy can be detected. N
that the functionaL3

(t) can also be seen as a borderline between fin
systems which show FS first-order transitions~above! and systems
which do not~below!.
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56 5209TRICRITICALITY AND THE BLUME-CAPEL MODEL: . . .
DISCUSSION

To the author’s knowledge no prior studies with the a
of precisely localizing the tricritical point of the Blume
Capel model on asimple cubiclattice exist, so the result
will be compared with those obtained on fcc lattices. Sa
Wortis, and Stauffer@5# investigated the fcc system b
means of high- as well as low-temperature series expans
and foundkBT(t)/J53.138(84) for the tricritical transition
temperature anda (t)55.659(12) for the tricritical coupling
ratio. Later Jain and Landau@7# found kBT(t)/J53.072(24)
anda (t)55.652(48) within a MC study.

In a fcc lattice each spin has twice as many nearest ne
bors as in a sc lattice, and mean-field theory predicts a tri
scaling ofT(t) anda (t) with the coordination number. How
ever, both quantities are not universal~unlike critical expo-
nents!, and the tricritical transition temperature of the f
lattice — reduced by a factor12 — is still 11% @5# or 8% @7#
higher than its value obtained in this work with sc topolog
This can be made plausible by considering that~i! for the
system with larger coordination number mean-field the
might be regarded as a better approximation, and~ii ! it al-
ways overestimates the transition temperature. Note tha
the three-dimensional Ising model the value forT(c) scaled
with the coordination number is about 9% larger in the
case compared with the sc one.~see, e.g., Ref.@23#!.

Since mean-field theory underestimates the tricritical c
pling ratio ~for coordination number 6,aMF

(t) 54ln(2)
'2.7726; see, e.g., Ref.@2#!, one could expect the properl
scaled fcc values fora (t) to be smaller than the sc resul
obtained in this paper. This is easily seen to be the case
the difference is surprisingly small, and, in order to det
mine it more precisely, a reduction of the fcc error bars
needed.

There is another point to be learned from the scaling
the FS tricritical ratio. The functionaL3

(t)(1/L) separates the
finite systems, which show a FS latent heat, from th
which do not~the latter lying under the curve, see Fig. 4!.
Since this function has apositiveslope, there exist system
~e.g.,a52.847) which show a first-order phase transition
the thermodynamic limit, but even a microcanonical analy

FIG. 5. Extrapolation of the FS tricritical transition temperatu
TL3

(t) to the infinite system via Eq.~24!. The error inT(t) is indicated
as a vertical bar on the ordinate.
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cannot find a precursor ifL is too small. Such a behavior i
not obvious in the first place. Indeed, a simulation of t
two-dimensionalBlume-Capel model indicates that the slo
of aL2

(t) plotted against 1/L is negative, i.e., sufficiently small
systems show signs of a first-order transition, which do
survive in the thermodynamic limit@24#.

A final remark concerns the scaling of the FS entro
barrier ~7!. Kosterlitz and Lee@12# investigated the two-
dimensional Potts model withqP$8,10%, and found that it
takes larger systems to see the expected behaviorDsN}1/L
for q58 than forq510. They conjectured that small sys
tems obey this scaling relation only, if the transition
strongly first order. Since the phase transitions investiga
in this paper are only just located on the first-order side
the tricritical point, any feature of a discontinuous transiti
can be regarded as being very weakly developed. Co
quently, the proper scaling ofDsN(a) is not only violated
quantitatively but alsoqualitatively: From Table III it can be
seen that — at least for the presented values ofL — the
specific entropy barrierincreaseswith increasing system
size, if a is chosen closely toa (t). Hence, to judge the orde
of the phase transition from thescalingof DsN(a), and thus
localize the tricritical point, is clearly inferior to the poss
bility of observing the ‘‘meta order parameter’’ FS late
heat as a function ofa.

CONCLUSION

Given the two-dimensional microcanonical partition fun
tion Va,N(E,SD) of the Blume-Capel model, its microca
nonical entropy as a function of energy can be calculated
arbitrary values of the coupling ratioa. By defining quanti-
ties likeeN

(lat) or aN
(t) , which are finite-system counterparts

infinite-system properties, it is possible to pinpoint the co
dinates of the tricritical point (a (t),T(t)) in the thermody-
namic limit.

It might be regarded as a drawback that the extrapola
N→` is doneempirically. Nevertheless the author conside
the presented FS quantities to be excellent probes for
investigation of infinite-system thermodynamic behav
~i.e., easily measurable and clearcut!. A deeper understand
ing of their scaling characteristics undoubtly would be
great practical importance.
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TABLE III. FS entropy barrierDsN(a)/kB3104 for three cou-
pling ratios near the tricritical point. Note thatDsN increaseswith
increasing system size, although in the limitN→` it must become
zero forall values ofa.

L a5
57
20 a5

77
27 a5

97
34

8 0.0100~62! 0.0460~67! 0.0754~76!

10 0.0088~19! 0.0479~17! 0.0900~24!

12 0.0199~14! 0.0757~12! 0.128 38~11!

14 0.0258~13! 0.0917~15! 0.1490~18!

18 0.0432~12! 0.1228~11! 0.1905~14!



r,
.

l

r-

P.

5210 56MARKUS DESERNO
@1# M. Blume, Phys. Rev.141, 517 ~1966!.
@2# H. W. Capel, Physica32, 966 ~1966!; 33, 295 ~1967!; 37, 423

~1967!.
@3# M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A4,

1071 ~1971!.
@4# D. Mukamel and M. Blume, Phys. Rev. A10, 610 ~1974!.
@5# D. M. Saul, M. Wortis, and D. Stauffer, Phys. Rev. B9, 4964

~1974!.
@6# M. Kaufman, R. B. Griffiths, J. M. Yeomans, and M. E. Fishe

Phys. Rev. B23, 3448 ~1981!; J. M. Yeomans and M. E
Fisher,ibid. 24, 2825~1981!.

@7# A. K. Jain and D. P. Landau, Phys. Rev. B22, 445 ~1980!.
@8# D. P. Landau and R. H. Swendsen, Phys. Rev. Lett.46, 1437

~1981!.
@9# C. M. Care, J. Phys. A26, 1481~1993!.

@10# I. D. Lawrie and S. Sarbach, inPhase Transitions and Critica
Phenomena, edited by C. Domb and J. L. Lebowitz~Aca-
demic, London, 1984!, Vol. 9.

@11# H. B. Callen,Thermodynamics and an Introduction to The
mostatistics, 2nd ed.~Wiley, New York, 1985!, Chap. 8.1.

@12# J. Lee and J. M. Kosterlitz, Phys. Rev. B43, 3265~1991!.
@13# A. Hüller, Z. Phys. B95, 63 ~1994!.
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